Connectivity through bounds for the Castelnuovo–Mumford regularity
نویسندگان
چکیده
منابع مشابه
Characteristic-free bounds for the CastelnuovoMumford regularity
We study bounds for the Castelnuovo–Mumford regularity of homogeneous ideals in a polynomial ring in terms of the number of variables and the degree of the generators. In particular, our aim is to give a positive answer to a question posed by Bayer and Mumford in What can be computed in algebraic geometry? (Computational algebraic geometry and commutative algebra, Symposia Mathematica, vol. XXX...
متن کاملConnectivity through bounds for the Castelnuovo-Mumford regularity
In this note we generalize and unify two results on connectivity of graphs: one by Balinsky and Barnette, one by Athanasiadis. This is done through a simple proof using commutative algebra tools. In particular we use bounds for the Castelnuovo–Mumford regularity of their Stanley–Reisner rings. As a result, if ∆ is a simplicial d-pseudomanifold and s is the largest integer such that ∆ has a miss...
متن کاملSome new bounds on the general sum--connectivity index
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
متن کاملBounds for the Castelnuovo-Mumford regularity
We extend the “linearly exponential” bound for the Castelnuovo-Mumford regularity of a graded ideal in a polynomial ring K[x1, . . . , xr] over a field (established by Galligo and Giusti in characteristic 0 and recently, by Caviglia-Sbarra for abitrary K) to graded submodules of a graded module over a homogeneous Cohen-Macaulay ring R = ⊕n≥0Rn with artinian local base ring R0. As an application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2017
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2016.11.011